Contribution of the C1A and C1B domains to the membrane interaction of protein kinase C.

نویسندگان

  • Jennifer Giorgione
  • Michelle Hysell
  • Daniel F Harvey
  • Alexandra C Newton
چکیده

The hallmark for protein kinase C activation is its "translocation" to membranes following generation of lipid second messengers. This translocation is mediated by the C1 and C2 domains, two membrane-targeting modules, whose engagement on membranes provides the energy for an activating conformational change in which an autoinhibitory pseudosubstrate sequence is released from the active site. Novel and conventional protein kinase C isozymes contain a tandem repeat of C1 domains, the C1A and C1B, which each contain a binding pocket for phorbol esters/diacylglycerol. This study addresses the contribution of the C1A and C1B domains in the regulation of protein kinase C's membrane interaction using bisfunctional (dimeric) phorbol myristate acetate (PMA) molecules. We show that dimeric bisphorbols are an order of magnitude more effective at recruiting full-length PKC betaII to membranes compared with monomeric PMA and that the effectiveness of the interaction depends on the nature and length of the cross-link between the PMA moieties. Most effective were dimeric phorbol 12-acetate 13-esters linked at the 13 position with a 14 carbon spacer. The increased potency of dimeric phorbol esters is reduced if either the C1A or C1B domains are mutated so that they are unable to bind PMA, if one moiety of the dimer contains a nonfunctional phorbol, or if the binding to the isolated C1B domain is measured. Thus, the increased potency of the dimeric phorbol esters results primarily from their ability to engage, to a limited extent, both C1 modules on the same molecule. Although dimeric phorbols were more potent than monomeric phorbol esters in recruiting protein kinase C to membranes, the magnitude of the increase was still several orders of magnitude lower than what would be predicted on the basis of the reduction in dimensionality that occurs when the first C1 domain is engaged on the membrane. Thus, engaging both domains can be forced but is highly unfavored. In summary, our data reveal that both C1 domains are oriented for potential membrane interaction but only one C1 domain binds ligand in a physiological context.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of Protein Kinase C-α C1A and C1B Domains with Membranes: A Combined Computational and Experimental Study

Protein kinase C-α (PKCα) has been studied widely as a paradigm for conventional PKCs, with two C1 domains (C1A and C1B) being important for the regulation and function of the kinase. However, it is challenging to explore these domains in membrane-bound environments with either simulations or experiments alone. In this work, we have combined modeling, simulations, and experiments to understand ...

متن کامل

Selective binding of phorbol esters and diacylglycerol by individual C1 domains of the PKD family.

The PKD (protein kinase D) family are novel DAG (diacylglycerol) receptors. The twin C1 domains of PKD, designated C1a and C1b, have been shown to bind DAG or phorbol esters. However, their ligand-binding activities and selectivities have not been fully characterized. Here, binding activities of isolated C1a, C1b and intact C1a-C1b domains to DAG and phorbol esters were analysed. The isolated C...

متن کامل

Role of the regulatory domain of protein kinase D2 in phorbol ester binding, catalytic activity, and nucleocytoplasmic shuttling.

Protein kinase D2 (PKD2) belongs to the PKD family of serine/threonine kinases that is activated by phorbol esters and G protein-coupled receptors (GPCRs). Its C-terminal regulatory domain comprises two cysteine-rich domains (C1a/C1b) followed by a pleckstrin homology (PH) domain. Here, we examined the role of the regulatory domain in PKD2 phorbol ester binding, catalytic activity, and subcellu...

متن کامل

Interplay of C1 and C2 domains of protein kinase C-alpha in its membrane binding and activation.

The regulatory domain of conventional protein kinase C (PKC) contains two membrane-targeting modules, the C2 domain that is responsible for Ca2+-dependent membrane binding of protein, and the C1 domain composed of two cysteine-rich zinc fingers (C1a and C1b) that bind diacylglycerols and phorbol esters. To understand the individual roles and the interplay of the C1 and C2 domains in the membran...

متن کامل

The origin of C1A-C2 interdomain interactions in protein kinase Calpha.

The regulatory domain of protein kinase Calpha (PKCalpha) contains three membrane-targeting modules, two C1 domains (C1A and C1B) that bind diacylglycerol and phorbol ester, and the C2 domain that is responsible for the Ca2+-dependent membrane binding. Accumulating evidence suggests that C1A and C2 domains of PKCalpha are tethered in the resting state and that the tethering is released upon bin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 42 38  شماره 

صفحات  -

تاریخ انتشار 2003